3.7 \(\int \frac{2+3 x^2}{4-9 x^4} \, dx\)

Optimal. Leaf size=16 \[ \frac{\tanh ^{-1}\left (\sqrt{\frac{3}{2}} x\right )}{\sqrt{6}} \]

[Out]

ArcTanh[Sqrt[3/2]*x]/Sqrt[6]

________________________________________________________________________________________

Rubi [A]  time = 0.0029153, antiderivative size = 16, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.118, Rules used = {26, 206} \[ \frac{\tanh ^{-1}\left (\sqrt{\frac{3}{2}} x\right )}{\sqrt{6}} \]

Antiderivative was successfully verified.

[In]

Int[(2 + 3*x^2)/(4 - 9*x^4),x]

[Out]

ArcTanh[Sqrt[3/2]*x]/Sqrt[6]

Rule 26

Int[(u_.)*((a_) + (b_.)*(x_)^(n_.))^(m_.)*((c_) + (d_.)*(x_)^(j_))^(p_.), x_Symbol] :> Dist[(-(b^2/d))^m, Int[
u/(a - b*x^n)^m, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[j, 2*n] && EqQ[p, -m] && EqQ[b^2*c + a^2*d,
0] && GtQ[a, 0] && LtQ[d, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{2+3 x^2}{4-9 x^4} \, dx &=\int \frac{1}{2-3 x^2} \, dx\\ &=\frac{\tanh ^{-1}\left (\sqrt{\frac{3}{2}} x\right )}{\sqrt{6}}\\ \end{align*}

Mathematica [A]  time = 0.0140431, size = 32, normalized size = 2. \[ \frac{\log \left (3 x+\sqrt{6}\right )-\log \left (\sqrt{6}-3 x\right )}{2 \sqrt{6}} \]

Antiderivative was successfully verified.

[In]

Integrate[(2 + 3*x^2)/(4 - 9*x^4),x]

[Out]

(-Log[Sqrt[6] - 3*x] + Log[Sqrt[6] + 3*x])/(2*Sqrt[6])

________________________________________________________________________________________

Maple [A]  time = 0.043, size = 13, normalized size = 0.8 \begin{align*}{\frac{\sqrt{6}}{6}{\it Artanh} \left ({\frac{x\sqrt{6}}{2}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2+2)/(-9*x^4+4),x)

[Out]

1/6*arctanh(1/2*x*6^(1/2))*6^(1/2)

________________________________________________________________________________________

Maxima [B]  time = 1.49265, size = 34, normalized size = 2.12 \begin{align*} -\frac{1}{12} \, \sqrt{6} \log \left (\frac{3 \, x - \sqrt{6}}{3 \, x + \sqrt{6}}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)/(-9*x^4+4),x, algorithm="maxima")

[Out]

-1/12*sqrt(6)*log((3*x - sqrt(6))/(3*x + sqrt(6)))

________________________________________________________________________________________

Fricas [B]  time = 1.40545, size = 77, normalized size = 4.81 \begin{align*} \frac{1}{12} \, \sqrt{6} \log \left (\frac{3 \, x^{2} + 2 \, \sqrt{6} x + 2}{3 \, x^{2} - 2}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)/(-9*x^4+4),x, algorithm="fricas")

[Out]

1/12*sqrt(6)*log((3*x^2 + 2*sqrt(6)*x + 2)/(3*x^2 - 2))

________________________________________________________________________________________

Sympy [B]  time = 0.091549, size = 32, normalized size = 2. \begin{align*} - \frac{\sqrt{6} \log{\left (x - \frac{\sqrt{6}}{3} \right )}}{12} + \frac{\sqrt{6} \log{\left (x + \frac{\sqrt{6}}{3} \right )}}{12} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x**2+2)/(-9*x**4+4),x)

[Out]

-sqrt(6)*log(x - sqrt(6)/3)/12 + sqrt(6)*log(x + sqrt(6)/3)/12

________________________________________________________________________________________

Giac [B]  time = 1.15612, size = 39, normalized size = 2.44 \begin{align*} \frac{1}{12} \, \sqrt{6} \log \left ({\left | x + \frac{1}{3} \, \sqrt{6} \right |}\right ) - \frac{1}{12} \, \sqrt{6} \log \left ({\left | x - \frac{1}{3} \, \sqrt{6} \right |}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)/(-9*x^4+4),x, algorithm="giac")

[Out]

1/12*sqrt(6)*log(abs(x + 1/3*sqrt(6))) - 1/12*sqrt(6)*log(abs(x - 1/3*sqrt(6)))